Teburin Abubuwan Ciki
1. Gabatarwa & Bayyani
Wannan takarda tana gabatar da wata hanya mai ban mamaki na tantance wuri a cikin gida a cikin tsarin Sadarwar Haske Mai Gani (VLC). Bayan wucewa daga hanyoyin gargajiya waɗanda ke ɗaukar siginonin hanya da yawa a matsayin amo, wannan binciken ya ba da shawarar tsarin tantance wuri na uplink wanda ke amfani da tunani mai yawa daga amsar tashar (CIR). Babban sabon abu shine amfani da ba kawai sashin Haske Kai Tsaye (LOS) ba, har ma da Kololuwar Wutar Lantarki ta Biyu (SPP)—mafi mahimmancin sashin watsawa—da kuma jinkirin lokaci tsakanin LOS da SPP don kimanta wurin mai amfani daga gefen cibiyar sadarwa. Wannan hanyar tana ƙalubalantar hikimar gargajiya a cikin wallafe-wallafen tantance wuri na VLC kuma tana ba da hanya zuwa ga ingantaccen tantance wuri tare da ƙaramin kayan aiki, yana buƙatar kawai na'urar gano hoto ɗaya (PD) a cikin tsarinsa na asali.
Daidaiton Matsayi (RMS)
25 cm
Tare da Na'urar Gano Hoto 1
Daidaiton Matsayi (RMS)
5 cm
Tare da Na'urori 4 Masu Gano Hoto
Siffa Mai Muhimmanci
Uplink & Gefen Cibiyar Sadarwa
Yana ba da damar sarrafa albarkatun da cibiyar sadarwa ta sani
2. Hanyar Tsaki & Tsarin Tsarin
Tsarin da aka gabatar ya juyar da tsarin tantance wuri na downlink na yau da kullun. Maimakon na'urar mai amfani ta ƙididdige matsayinta daga fitilun LED da aka kayyade, cibiyar sadarwa tana kimanta wurin mai amfani ta amfani da siginonin da aka aika daga na'urar hannu mai amfani (misali, mai watsa IR) zuwa masu karɓar uplink da aka kayyade (masu gano hoto) a saman rufi.
2.1. Tsarin Tsarin
Tsarin ya ƙunshi ɗaya ko fiye da na'urorin gano hoto (PDs) da aka kayyade da aka shigar a saman rufi. Mai amfani yana ɗauke da mai watsa infrared (IR). PDs suna ɗaukar siginonin uplink, wanda ya haɗa da hanyar LOS kai tsaye da tunani da yawa daga bango da abubuwa.
2.2. Amfani da Amsar Tashar
Hankalin algorithm yana cikin sarrafa sigina. Yana nazarin Amsar Tashar da aka karɓa $h(t)$:
- Sashin LOS ($P_{LOS}$): Kololuwar farko kuma mafi ƙarfi, wanda yayi daidai da hanyar kai tsaye.
- Kololuwar Wutar Lantarki ta Biyu (SPP) ($P_{SPP}$): Kololuwar gaba mafi mahimmanci, wanda aka gano daga sassan watsawa. Wannan yawanci yayi daidai da tunani mai mahimmanci na mataki na farko.
- Jinkirin Lokaci ($\Delta \tau$): Bambancin lokaci $\Delta \tau = \tau_{SPP} - \tau_{LOS}$ tsakanin isowar sassan LOS da SPP.
3. Cikakkun Bayanai na Fasaha & Tsarin Lissafi
Ƙididdigar matsayi tana amfani da alaƙar lissafi. Nisan daga mai amfani zuwa PD ta hanyar LOS shine $d_{LOS} = c \cdot \tau_{LOS}$, inda $c$ shine saurin haske. SPP yayi daidai da hanyar da aka tunani. Ta hanyar ƙirar ɗakin da kuma ɗauka cewa SPP shine tunani na mataki na farko daga babban bango, jimillar tsawon hanyar $d_{SPP}$ na iya kasancewa da alaƙa da ma'auni na mai amfani $(x_u, y_u, z_u)$ da ma'auni na PD $(x_{PD}, y_{PD}, z_{PD})$ ta hanyar hanyar hoto.
Ƙarfin haske da aka karɓa don wata hanyar da aka bayyana ana ƙiransa kamar haka: $$P_r = P_t \cdot H(0)$$ inda $H(0)$ shine ribar tashar DC. Don hanyar haɗin LOS tare da mai watsa Lambertian, ana bayar da shi kamar haka: $$H_{LOS}(0) = \frac{(m+1)A}{2\pi d^2} \cos^m(\phi) \cos(\psi) \text{rect}\left(\frac{\psi}{\Psi_c}\right)$$ inda $m$ shine tsari na Lambertian, $A$ shine yankin PD, $d$ shine nisa, $\phi$ da $\psi$ sune kusurwoyin haske da kusurwoyin shiga, kuma $\Psi_c$ shine filin kallon mai karɓa. Irin wannan, ƙarin tsari mai rikitarwa ya shafi hanyar tunani (SPP), wanda ya haɗa da yanayin tunani na saman da ƙarin tsawon hanya.
A zahiri algorithm yana warware saitin daidaitattun lissafi da aka samo daga waɗannan alaƙa don matsayin mai amfani.
4. Sakamakon Gwaji & Aiki
An tabbatar da aikin ta hanyar siminti. Ma'auni mai mahimmanci shine Kuskuren Matsayi na Tushen Ma'ana (RMS).
- Yanayin PD Guda: Ta amfani da mai karɓar uplink ɗaya kawai, tsarin ya cimma daidaiton RMS na 25 cm. Wannan yana nuna ainihin iyawar dabarar amfani da hanyoyi da yawa.
- Yanayin PD Hudu: Ta ƙara ƙarin wuraren tunani (PDs huɗu), daidaito ya inganta sosai zuwa 5 cm. Wannan yana nuna iyawar tsarin da yuwuwar aikace-aikacen daidaito mai girma.
Bayanin Ginshiƙi (A fakaice): Taswirar sandar za ta iya nuna kuskuren RMS (y-axis) yana raguwa sosai yayin da adadin Masu Gano Hoto (x-axis) ya karu daga 1 zuwa 4. Taswirar layi na biyu na iya zana CIR, yana bayyana kololuwar LOS da SPP a sarari, tare da alamar $\Delta \tau$ tsakaninsu.
5. Tsarin Bincike & Misalin Lamari
Tsarin don Kimanta Hanyoyin Tantance Wuri na VLC:
- Bukatar Kayan Aiki: Adadin nodes da aka kayyade (LEDs/PDs) da ake buƙata don gyara na asali.
- Siffar Sigina da Ake Amfani: RSS, TOA, AOA, ko tushen CIR (kamar yadda yake a cikin wannan takarda).
- Sarrafa Hanyoyi da Yawa: Yana ɗauka a matsayin amo (na gargajiya) ko yana amfani da shi azaman siffa (sabo).
- Wurin Lissafi: Gefen mai amfani (yana ƙara rikitarwar na'ura) vs. Gefen cibiyar sadarwa (yana ba da damar hankalin cibiyar sadarwa).
- Daidaito vs. Ciniki na Rikitarwa: Kuskuren RMS da za a iya cimma dangane da farashin tsarin da ƙarin sarrafawa.
6. Bincike Mai Zurfi & Fahimtar Kwararru
Fahimtar Tsaki: Mafi radadin shawara na wannan takarda shine sake tsara dabarar hanyoyi da yawa daga abokin gaba na tantance wuri zuwa aboki. Yayin da fagen hangen nesa na kwamfuta yana da irin wannan sauyin tsari tare da nasarar Filin Haske na Jijiya (NeRF)—juyar da tunani mai rikitarwa na haske zuwa kadara da za a iya sake ginawa—amfani da wannan don ƙirar tashar da aka ƙaddara don tantance wuri hakika sabon abu ne a VLC. Lamari ne na gargajiya na juyar da babban ƙayyadaddun tsarin (ƙayyadaddun bandwidth, tarwatsa hanyoyi da yawa) zuwa babban fa'idarsa.
Kwararar Hankali: Hujja tana da kyau: 1) Siginonin IR na uplink suna da wadata a cikin hanyoyi da yawa. 2) Tsarin CIR aikin ƙaddara ne na lissafi da kayan aiki. 3) SPP siffa ce mai karko, wacce za a iya gane ta. 4) Don haka, mai karɓa ɗaya na iya cire isassun ƙayyadaddun lissafi don tantance wuri na 3D. Hankali yana riƙe, amma ƙarfin sa a wajen siminti shine tambaya mai mahimmanci.
Ƙarfi & Kurakurai:
- Ƙarfi: Ƙananan kayan aiki (aikin PD guda ɗaya), hankalin gefen cibiyar sadarwa, amfani mai kyau na kimiyyar lissafi, da yuwuwar santimita. Yana daidaitawa da yanayin lissafin gefe da sauƙaƙe cibiyar sadarwa.
- Kurakurai Masu Muhimmanci: Giwa a cikin ɗaki shine canje-canjen muhalli. Hanyar tana ɗauka cewa ƙirar ɗaki da aka sani, tsayayye don haɗa SPP da takamaiman mai tunani. Matsugunan kayan daki, buɗe kofofi, ko ma mutane masu tafiya na iya canza hanyoyin tunani kuma su soke ƙirar, wanda zai haifar da gazawa mai muni sai dai idan tsarin yana da ci gaba, iyawar taswira mai girma—buƙata mara banza. Wannan shine dugadugansa idan aka kwatanta da ƙarin hanyoyin tantance sa hannun RSS masu juriya, ko da yake ba su da daidaito.
7. Ayyukan Gaba & Hanyoyin Bincike
Aikace-aikace:
- Masana'antu IoT & Kayan Aiki: Bincike mai daidaito na kayan aiki, kadara, da mutummutumi a masana'antu da ma'ajiyoyi.
- Gine-gine Masu Hankali: Tantance wurin mutum a gefen cibiyar sadarwa don sarrafa yanayi, tsaro, da nazarin amfani da sarari ba tare da keta sirrin na'urar sirri ba.
- Gaskiyar Haɓaka (AR): Samar da bayanan matsayi mara jinkiri, mai inganci don kewayawa na AR a cikin gida a gidajen tarihi, filayen jiragen sama, ko manyan kantuna lokacin da aka haɗa su da watsa bayanan VLC.
- Mutummutumi: A matsayin na'urar firikwensin haɗin gwiwa don tantance wurin mutummutumi a cikin muhallin da GPS da LiDAR suka iya zama bai isa ba ko kuma sun yi tsada sosai.
- Daidaitawar Muhalli Mai Ƙarfi: Haɓaka algorithms waɗanda za su iya gano da daidaitawa da canje-canje a cikin yanayin tunani a ainihin lokaci, mai yiwuwa ta amfani da koyon inji don rarrabuwa da bin diddigin siffofin tunani.
- Tsarin Haɗin gwiwa: Haɗa wannan hanyar tushen CIR tare da wasu bayanan firikwensin (na'urorin auna inertial, RSS daga wasu bandeji) don ƙarfi.
- Daidaituwa & Ƙirar Tashar: Ƙirƙirar ƙarin ƙira na tashar VLC masu rikitarwa da daidaitattun waɗanda ke siffanta tunani mai yawa don kayan aiki da lissafi daban-daban.
- Haɓaka Kayan Aiki: Ƙirƙirar masu gano hoto masu rahusa, manyan bandwidth da masu watsa IR waɗanda aka inganta don ɗaukar cikakkun bayanan CIR.
8. Nassoshi
- H. Hosseinianfar, M. Noshad, M. Brandt-Pearce, "Positioning for Visible Light Communication System Exploiting Multipath Reflections," a cikin taro ko mujalla da ya dace, 2023.
- Z. Zhou, M. Kavehrad, da P. Deng, "Indoor positioning algorithm using light-emitting diode visible light communications," Optical Engineering, vol. 51, no. 8, 2012.
- T.-H. Do da M. Yoo, "Potentialities and Challenges of VLC Based Indoor Positioning," International Conference on Computing, Management and Telecommunications, 2014.
- S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, da Y. H. Son, "Indoor Three-Dimensional Location Estimation Based on LED Visible Light Communication," Electronics Letters, vol. 49, no. 1, 2013.
- S. Hann, J.-H. Choi, da S. Park, "A Novel Visible Light Communication System for Enhanced Indoor Positioning," IEEE Sensors Journal, vol. 18, no. 1, 2018.
- Mildenhall, B., et al. "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis." ECCV. 2020. (Nassoshi na waje don sauyin tsari a cikin amfani da bayanan haske masu rikitarwa).
- IEEE Standard for Local and metropolitan area networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Std 802.15.7-2018.